Debugging of CPython processes with
gdb

KharkivPy

January 28th, 2017

by Roman Podoliaka, Development Manager at Mirantis

twitter: @rpodoliaka
blog: http://podoliaka.org
slides: http://podoliaka.org/talks/

https://www.mirantis.com/
http://podoliaka.org/
http://podoliaka.org/talks/

Goals of this talk

e make gdb "a known unknown", so that you consider it as an
option in the future

e highlight the common gotchas

Why debugging?

e working on a huge open source cloud platform - OpenStack

o dozens of various (micro-)services - from REST APIs to system
daemons

e new features are important, but high availability and overall
stability are even more important

e continuous functional / performance / scale testing
e numerous customer deployments

e things break... pretty much all the time!

https://www.openstack.org/

Caveats

The described debugging techniques assume that you use:
e Linux
o Darwin (macOS): must be similar, but lldb is the debugger

of choice there

o Windows: should work, if you use a recent gdb build with
Python support enabled and have debugging symbols for
CPython

e CPython 2.7 or 3.x

o debugging scripts are interpreter-specific, so no
PyPy/Jython/lronPython/etc

o 2.6 works too, but up-to-date scripts are more useful

What's wrong with pdb?
It's a nice and easy to use debugger, that should be your default
choice, but it:

e can't attach to a running process

e can't step into native code (e.g. shared libraries, C/C++
extensions or CPython itself)

e can't be used for debugging of interpreter crashes (i.e. core
dumps)

Typical problems: hung process

e aprocessisstuckin s (sleeping) state and does not respond

e strace 'ing shows that it is trying to acquire a lock (i.e.
futex(...))

e one needs a way to map this to the exact line in the application
code

e especially important if you use cooperative concurrency (i.e.
asyncio, eventlet, gevent, etc)

Typical problems: going into native code

e ~14000 unit tests, one or a few create a temporary directory in
the git working tree and do not clean up after themselves. How
do you identify those?

e pdb does not allow to set breakpoints in built-in functions (like

os.makedirs())

Typical problems: interpreter crashes

e rarely happen in common applications

e but still do with things like mod_wsqgi
(https://github.com/GrahamDumpleton/mod_wsgi/issues/81)

e or calls to native libraries via cffi
(https://bitbucket.org/cffi/cffi/issues/240/cffi-crash-on-debian-
unstable-with-gcc-5)

https://github.com/GrahamDumpleton/mod_wsgi/issues/81
https://bitbucket.org/cffi/cffi/issues/240/cffi-crash-on-debian-unstable-with-gcc-5

gdb

e a general purpose debugger, that is mostly used for debugging
of C and C++ applications (supports Objective-C, Pascal, Rust,
Go and more)

e allows attaching to a running process without instrumenting it in
advance

e allows taking a core dump (a state of process memory at a
specific moment of time) in order to analyze it later

e allows post-mortem debugging of core dumps of crashed
processes saved by the kernel (if ulimit allows for it)

e allows switching between threads

ptrace: the secret power behind gdb and strace

#include <sys/ptrace.h>

long ptrace(enum _ ptrace request request, pid_t pid,
void *addr, void *data);

provides a means by which one process (the “tracer") may observe
and control the execution of another process (the “tracee”)

Debugging of interpreted languages

e Python code is not compiled into a native binary for a target
platform. Instead there is an interpreter (e.g. CPython, the
reference implementation of Python), which executes compiled
byte-code

e when you attach to a Python process with gdb, you'll debug the
interpreter instance and introspect the process state at the
interpreter level, not the application level

Debugging of interpreted languages: interpreter
level traceback

#O
#1
H#2
#3
A
#5
#6

0x00007fcce9b2faf3
0x0000000000435ef8
0x000000000049968d
PyEval EvalFrameEx
0x0000000000499ef2

call function () at .

PyEval_EvalFrameEx

in _ _epoll wait _nocancel () at ../sysdep
in pyepoll poll (self=0x7fccdf54f240, ar
in call function (oparg=<optimized out>,
() at ../Python/ceval.c:2666

in fast_function () at ../Python/ceval.c
./Python/ceval.c:4041

() at ../Python/ceval.c:2666

Debugging of interpreted languages: application
level traceback

/usr/local/lib/python2.7/dist-packages/eventlet/greenpool.py:82
“func(*args, **kwargs)"

/opt/stack/neutron/neutron/agent/13/agent.py:461 in _process_nrc
“for rp, update in self. queue.each update to next router()

/opt/stack/neutron/neutron/agent/13/router processing queue.py:
"next_update = self. queue.get()"

/usr/local/lib/python2.7/dist-packages/eventlet/queue.py:313 in
“return waiter.wait()"

/usr/local/lib/python2.7/dist-packages/eventlet/queue.py:141 in
"return get _hub().switch()"

/usr/local/lib/python2.7/dist-packages/eventlet/hubs/hub.py: 294
“return self.greenlet.switch()"

PyEval_EvalFrameEx

{

PyEval EvalFrameEx(PyFrameObject *f, int throwflag)

/* variable declaration and initialization stuff */

for (55) {
/* do periodic housekeeping once in a few opcodes */
opcode = NEXTOP();

if (HAS_ARG(opcode)) oparg = NEXTARG();
switch (opcode) {
case NOP:

goto fast next opcode;

/* Llots of more complex opcode implementations */
default:

/* become rather unhappy */
}

/* handle exceptions or runtime errors, if any */

¥

/* we are finished, pop the frame stack */
tstate->frame = f->f back;

return retval;

gdb and Python

e gdb can be built with Python support enabled

e that essentially means one can extend gdb with Python scripts
o e.g. pretty-printing for C++ STL containers:
https://sourceware.org/gdb/wiki/STLSupport

e the very same mechanism is used for debugging of CPython:
https://github.com/python/cpython/blob/master/Tools/gdb/libpy
thon.py

https://sourceware.org/gdb/wiki/STLSupport
https://github.com/python/cpython/blob/master/Tools/gdb/libpython.py

Prerequisites: gdb with Python support

apt-get install gdb

or

yum install gdb

or something else depending on the distro you use, then

gdb -ex 'python print("ok")' -ex quit | tail -n 1

Prerequisites: CPython debugging symbols

debugging symbols are information on the data type of each
variable or function and the correspondence between source
line numbers and addresses in the executable code

generated when applications are compiled with -g flag passed
to gcc/clang

consume a lot of disk space, thus, are usually stripped from
compiled binaries and shipped separately

the most popular and commonly used format of debugging
symbols is called DWARF

Prerequisites: CPython debugging symbols

apt-get install python-dbg

or

yum install python-debuginfo

CentOS/RHEL put those into a separate repo

debuginfo-install python

Some distros (like Arch Linux) do not ship debugging symbols at all

http://debuginfo.centos.org/

Prerequisites: CPython scripts for gdb

e developed in CPython code tree:
https://github.com/python/cpython/blob/master/Tools/gdb/libpy
thon.py

e packaged and shipped by Linux distros
e loaded by gdb automatically when debugging python binary

e can also be loaded manually like
o (gdb) source ~/src/cpython/Tools/gdb/libpython.py

https://github.com/python/cpython/blob/master/Tools/gdb/libpython.py

Debug a process from the start

gdb /usr/bin/python

(gdb) run my_ python script.py

Attach to a running process

gdb /usr/bin/python -p $PID

or simply

gdb -p $PID

(note: gdb will stop all process threads)

Load the inferior state from a core dump

get a core dump of a running process

gcore $PID

open it in gdb

gdb /usr/bin/python core.$PID

Print a traceback

(gdb) py-bt
Traceback (most recent call first):

File "/usr/lib/python2.7/logging/ init .py", line
stream.write(ufs % msg)

File "/usr/lib/python2.7/logging/ init_ .py", line
self.emit(record)

File "/usr/lib/python2.7/logging/ init .py", line
hdlr.handle(record)

File "/usr/lib/python2.7/logging/ init .py", line
self.callHandlers(record)

File "/usr/lib/python2.7/logging/ init .py", line
self.handle(record)

File "/usr/lib/python2.7/logging/ init .py", line
self. log(DEBUG, msg, args, **kwargs)

File "/usr/lib/python2.7/logging/ init_ .py", line
self.logger.debug(msg, *args, **kwargs)

File "/opt/stack/nova/nova/compute/resource_tracker.
"pci _devices': pci_devices})

872, in emi

759, in har

1336,
1296,
1286,
1155,

1440,

py", line €

in cc
in hc
in 1

in de

in de

Print Python code

(gdb) py-list

867 try:

868 if (isinstance(msg, unicode) and

869 getattr(stream, 'encoding', None)):

870 ufs = u'%s\n'

871 try:

>872 stream.write(ufs % msg)

873 except UnicodeEncodeError:

874 #Printing to terminals sometimes fails. For ex
875 #with an encoding of 'cpl251', the above write
876 #workR i1f written to a stream opened or wrapped
877 #the codecs module, but fail when writing to d

Print local variables

(gdb) py-locals

self = <ColorHandler(...)>

stream = <file at remote 9x7fa76ebb6led>
fs = '%s\n'

ufs = u'%s\n’

Set a breakpoint in native code

gdb /usr/bin/python

(gdb) break mkdir
Breakpoint 1 at 0x417600

(gdb) condition 1 $ regex((char*) $rdi, ".*/instances/.*")

(gdb) commands 1

Type commands for breakpoint(s) 1, one per line.
End with a line saying just "end".

>py-bt

>end

end

(gdb) run -m testtools.run discover -s nova/tests/unit

Execute arbitrary Python code in the process
context

(gdb) call PyGILState Ensure()

$21 = PyGILState UNLOCKED

(gdb) call PyRun_SimpleString("print('hello')")
hello

$22 = 0

(gdb) call PyGILState Release(PyGILState UNLOCKED)

Gotchas: virtual environments and custom
CPython builds

e when attaching to a Python process started in a virtual

environment debugging symbols may suddenly not be found
anymore

gdb -p $2975

Attaching to process 2975

Reading symbols from .../venv/bin/python2...
(no debugging symbols found)...done.

e it happens because gdb looks for them in the wrong place: if
you omit the inferior binary path, gdb tries to derive it from
/proc/$PID/exe symlink and then load debugging symbols
stored in the predefined path - e.9. /usr/1ib/debug/$PATH . For a
virtual environment it's not /usr/1ib/debug/usr/bin/python2 ,
thus, loading fails

Gotchas: virtual environments and custom
CPython builds

e the solution is to always pass the inferior binary path explicitly
when attaching to a process

gdb /usr/bin/python2.7 -p $PID

e alternatively, modern CPython builds (at least on Debian Testing
or Ubuntu Xenial) have an associated build-id value, thatis
used to uniquely identify stripped debugging symbols

objdump -s -j .note.gnu.build-id /usr/bin/python2.7

Reading symbols from /usr/lib/debug/.build-id/8d/04a3ae38521cb7

Gotchas: virtual environments and custom
CPython builds

e py- commands may be undefined for a very similar reason

(gdb) py-bt
Undefined command: "py-bt". Try "help".

e gdb autoloads debugging scripts from $PATH-gdb.py

(gdb) info auto-load

gdb-scripts: No auto-load scripts.

libthread-db: No auto-loaded libthread-db.
local-gdbinit: Local .gdbinit file was not found.
python-scripts:

Loaded Script

Yes /usr/share/gdb/auto-load/usr/bin/python2.7-gdb.py

Gotchas: virtual environments and custom
CPython builds

e you can always load the scripts manually

(gdb) source /usr/share/gdb/auto-load/usr/bin/python2.7-gdb.py

e it's also useful for testing of the new versions of gdb scripts
shipped with CPython

Gotchas: PTRACE_ATTACH not permitted

Controlled by /proc/sys/kernel/yama/ptrace_scope , possible values
alre

e O -aprocesscan PTRACE_ATTACH to any other
process running under the same uid
e 1 -only descendants can be traced (default on Ubuntu)

e 2 -admin-only attach, or through children calling
PTRACE_TRACEME

e 3 -NO processes may use ptrace with PTRACE_ATTACH nor via
PTRACE_TRACEME

Gotchas: python-dbg

e a separate build of CPython (with --with-pydebug passed to
./configure) with many run-time checks enabled, thus, much
slower

e not required for using gdb

$ time python -c "print(sum(range(1l, 1000000)))"
499999500000

real Omo.096s
user Omoe.057s
Sys 0mo.030s

$ time python-dbg -c "print(sum(range(l, 1000000)))"
499999500000
[18318 refs]

real Omo.237s
user Omo.197s
Sys 0mo.016s

Gotchas: compiler build flags

e some Linux distros build CPython with -ge or -gi flags passed
to gcc: the former produces a binary without debugging
information at all, and the latter does not allow gdb to get
information about local variables at runtime

e the solution is to rebuild CPython with -g or -g2 (2 isthe
default value when -g is passed)

https://gcc.gnu.org/onlinedocs/gcc/Debugging-Options.html

Gotchas: optimized out frames

e depending on the optimization level used in gcc when building
CPython or the exact compiler version used, it's possible that
information on local variables or function arguments will be lost
at runtime (e.g. with aggressive optimizations enabled by -03)

(gdb) py-bt
Traceback (most recent call first):
File "test2.py", line 9, in g
time.sleep(1000)
File "test2.py", line 5, in f
g()

(frame information optimized out)

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

Gotchas: optimized out frames

e it's still possible to debug such builds of CPython, though it may
be tricky

(gdb) disassemble
Dump of assembler code for function PyEval EvalFrameEx:

OXx00007ffff7a04e88 <+8>: mov %rdi,%rl2

(gdb) p ((PyObject*) $rl12)->ob_type->tp name
$97 = ox7ffff7ab59f0 "frame"

(gdb) p (char*) (&((PyUnicodeObject*) ((PyFrameObject*) $ri2)
->f _code->co_name)-> base-> base + 1)

$98 = ox7ffff6a8acad "g"

Gotchas: PyPy, Jython, etc

e the described debugging technique is only feasible for the
CPython interpreter as is, as the gdb extension is specifically
written to introspect the state of CPython internals (e.g.

PyEval EvalFrameEx calls)

o for PyPy there is an open issue on Bitbucket, where it was
proposed to provide integration with gdb, but looks like the
attached patches have not been merged yet and the person,
who wrote those, lost interest in this

e for Jython you could probably use standard tools for debugging
of JVM applications, e.g. VisualVM

https://bitbucket.org/pypy/pypy/issues/1204/gdb-hooks-for-debugging-pypy
http://visualvm.java.net/

Links

o gdb Debugging Full Example:
http://brendangregg.com/blog/2016-08-09/gdb-example-
ncurses.html

o Low-level Python debugging with gdb:
http://grapsus.net/blog/post/Low-level-Python-debugging-with-
GDB

e a blog post on CPython internals:
https://tech.blog.aknin.name/category/my-projects/pythons-
innards/

o pydevd: http://pydev.blogspot.com/2014/09/attaching-
debugger-to-running-process.html

e pyringe: https://github.com/google/pyringe

http://brendangregg.com/blog/2016-08-09/gdb-example-ncurses.html
http://grapsus.net/blog/post/Low-level-Python-debugging-with-GDB
https://tech.blog.aknin.name/category/my-projects/pythons-innards/
http://pydev.blogspot.com/2014/09/attaching-debugger-to-running-process.html
https://github.com/google/pyringe

Conclusion

e gdb is a powerful tool, that allows one to debug complex
problems with crashing or hanging CPython processes, as well
as Python code, that does calls to native libraries

e on modern Linux distros debugging CPython processes with
gdb must be as simple as installing of debugging symbols for
the interpreter build, although there are a few known gotchas,
especially when virtual environments are used

Questions?

Your feedback is very appreciated!

twitter: @rpodoliaka
blog: http://podoliaka.org
slides: http://podoliaka.org/talks/

http://podoliaka.org/
http://podoliaka.org/talks/

